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Abstract 

The purpose of this note is to show how recent progress in non-commutative combinatorial 
algebra gives a new input to Jacobian-related problems in a commutative situation. @ 1997 
Elscvier Science B.V. 

1991 Math. Subj. Class.: 13B2.5, 13810, 14A05 

1. Introduction 

Let K be a commutative field of characteristic 0, and P, = K[xl,. . . ,x,1 the poly- 

nomial algebra over K. We start by recalling a well-known 

Jacobian Conjecture (JC). Let pl,. . . , pn EP,. If the Jacobian matrix J=(dj(p;))i<i,j~ 

is invertible, then polynomials pt , . . , p,, generate the whole algebra P,,. 

We deliberately avoid mentioning determinant here in order to make the conjecture 

suitable for non-commutative algebraic systems as well (upon defining partial deriva- 

tives appropriately). A good survey on the progress made during 1939-1981 can be 

found in [ 11. More recent survey papers are [4,5]. 

Due to its obvious attractiveness, this problem has been considered by people work- 

ing in different areas; in particular, several non-commutative analogs of JC appeared 

to be easier to settle - see e.g. [8]. 

In this paper, we consider polynomials which can be included in a generating set of 

cardinality n of the algebra P,. We shall call those polynomials coordinate to simplify 

the language (in a non-commutative setting, one uses the notion of “primitive element” 

instead of coordinate). 

* Corresponding author. E-mail: shpil@math.ucsb.edu. 

0022-4049/97/$17.00 @ 1997 Elsevier Science B.V. All rights reserved 
PII SOO22-4049(96)00043-6 



48 A. van den Essen, V. Shpilrainl Journal of‘ Purr and Applied Algebra 119 (1997) 47-52 

It is clear that every automorphism takes any coordinate polynomial of P, to a 

coordinate one, so that the set of all coordinate polynomials in P, forms an orbit 

under the action of the group Aut(P,,). We consider here the question of whether or 

not the converse is true: 

Problem 1. Is it true that every endomorphism of P, taking any coordinate polynomial 

to a coordinate one, is actually an automorphism? 

We prove that for the algebra P2, the answer is “yes” (here the ground field K may 

have an arbitrary characteristic). 

Theorem 1.1. If an endomorphism qj’ the algebru P2 takes every coordinate poly- 

nomial to a coordinate one, then it is actually an automorphism. 

We also note that our proof of this theorem works in the case of free associative 

algebra of rank 2 as well. 

Thus, our theorem says that (in the case of PI) if an endomorphism acts “like an 

automorphism” on one particular orbit, then it acts like an automorphism everywhere. 

A more general question arises if we consider arbitrary orbits under the action of 

Aut(P,): 

Problem 2. Let p be a polynomial; deg p 2 1. Let cp be an endomorphism of P, 

which preserves the orbit of p under the action of the group Aut(P,,). Is it true that 

cp is actually an automorphism? 

The answer to Problem 1 is probably “yes” for any n 2 2. In fact, we show below 

that if JC is true then the answer is indeed affirmative. Moreover, there is a “dimension 

shift”: 

Theorem 1.2. Zf the Jacobiun conjecture is true jbr the algebra P,_, (n > 2), then 

Problem 1 has the qfirmative ansnler for the algebra P,, in case the ground jield is 

algebraically closed and has characteristic zero. 

We note that Problem 1 has been settled (in the affirmative) for a free Lie algebra 

of an arbitrary finite rank [7], and for a free group of rank 2 (S. Ivanov, verbal 

communication). 

Now we can go on and assume that automorphisms can be distinguished from non- 

automorphisms by means of their value on just a single element; we call it a test 

element. More formally, a polynomial p E P,, is called a test polynomial if q(p) = 

a(p) for some endomorphism cp and automorphism c1 implies that cp is actually an 

automorphism itself. The condition tp( p) = a(p) can be obviously replaced here with 

just V(P) = P. 
For a survey on test elements in a free group, we refer to [9]. We also mention a 

well-known “commutator test” in a free associative algebra of rank 2 due to Dicks [3]. 
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It is not difficult to come up with test elements in the polynomial algebra P,, over R, 

the field of reals - see Example 3.1 in Section 3. On the other hand, this yields a 

(probably difficult) 

Problem 3. Characterize test polynomials in the algebra P, over the field C. 

We give a necessary condition for a polynomial to be a test polynomial in P, 

(Proposition 3.2). This condition however is not sufficient (Example 3.3). 

One might go even further on and assume that it is possible to completely determine 

an endomorphism by means of its value on a single element. In other words, one might 

look for a polynomial p E P, with the following property: whenever q(p) = $(p) for 

endomorphisms cp and $ of the algebra P,,, it follows that cp = $. 

If cp and $ are automorphisms, polynomials p with this property do exist - see 

discussion in Section 3. In contrast, we will prove: 

Proposition 1.3. Let K be a real or algebraically closed jield. For any set of n - 1 

polynomials { ~1,. . , pn- 1) C P,, there exist two difSerent endomorphisms cp, $ of the 

algebra P,,, such that cp(p;) = *(pi), for all 1 5 i < n - 1. 

2. Problem 1: The case n = 2 and a relation to the Jacobian Conjecture 

Proof of Theorem 1.1. (i) Let 9 be an endomorphism of P2 which takes every co- 

ordinate polynomial to a coordinate one. Let cp(xt ) = p and &x2) = q. Then p is 

a coordinate polynomial. Hence, there is an automorphism $ such that $(x1) = p. 

Therefore, on replacing cp by I+-’ . cp, we may assume that p = xl. 

(ii) Write q = 4.x+q0(x1), ;T E P2, qo(x1) E K[xl]. Since x2-40(x1) is a coordinate 

polynomial, so is its image under the endomorphism cp, i.e., q - qo(x1) is a coordinate 

polynomial. This means q . x2 is a coordinate polynomial and therefore irreducible in 

P2. Consequently, ;T E K’, whence cp = (xt,ijx~ + qo(x1)) is an automorphism. 0 

Remark 2.1. As we have mentioned in the Introduction, the same proof gives the same 

result for a free associative algebra of rank 2. 

Remark 2.2. A similar proof can be carried out to get the following generalization of 

Theorem 1 .l: if an endomorphism of the algebra P,, n > 2, takes every coordinate 

(n - l)-tuple of polynomials to another coordinate (n - 1)-tuple, then it is actually an 

automorphism. 

Our proof of Theorem 1.2 is based on the following lemma which is due to Harm 

Derksen. 

Lemma 2.3. Let K be an algebraically closed $eld. Let ~1,. . . , p,, be in P,,. Ifpoly- 

nomiul il p1 •t . + 2, p, has never-vanishing gradient for every non-trivial K-linear 

combination, then det J E K*, where J = (d,(pi))l<l,j<n. 
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Proof. If detJ e K*, then for some z E K”, detJ(z) = 0. Hence, the rows of J(z) are 

K-linearly dependent, say 

for some Ri E K, not all of them zero. Thus, if we put p = L1 p1 + . ’ . + l.,p,, then 

dl(PD) = ... = d,(p)(z) = 0. However, partial derivatives of p have no common 

zeroes by the hypothesis, hence a contradiction. 0 

Proof of Theorem 1.2. Let cp = (PI,. , pn) be an endomorphism taking coordinates to 

coordinates. Then, arguing as in the proof of Theorem 1 .l, we may assume that pi = 

xi. Since each non-trivial K-linear combination of the xi is a coordinate polynomial in 

P,,, we have the conditions of Lemma 2.3 satisfied. Therefore, det(dj(pi)i<i,j<,) E 

K*. Since PI = XI, we deduce that det(dj(pl)21i,j<n) E K*. Now applying the 

(n - 1)-dimensional JC, we see that K(xl )[ps, . . . , pn] z K(xl )[xz,. . . ,x,J, where K(xl) 

is the quotient field of K[x,]. It follows that K(xl, ~2,. . . , p,,) = K(xI,x~, . . . ,xn), 

which by Keller’s theorem [6] implies K[xl, ~2,. ., pn] = P,. Thus, cp is an auto- 

morphism. 0 

3. Test polynomials 

Example 3.1. The following polynomial p is a test polynomial for distinguishing auto- 

morphisms from non-automorphisms of the algebra P,, over R, the field of reals, or 

any of its subfields: 

p=x;+-+x,2. 

Indeed, suppose q(p) = p for some endomorphism cp of P,,. Then cp is clearly a 

linear mapping since monomials of highest degree in ((P(x~))~ cannot cancel out. Using 

the “chain rule”, we get: 

(XI,. . . A,) = (CP(XI 1,. . > cp(xn))Jcp. (1) 

If cp is a degenerate linear transformation, then the elements of the row-matrix on the 

right-hand side of (1) are R-linearly dependent, whereas the elements on the left-hand 

side are not. Therefore, cp must be a non-degenerate linear transformation, hence an 

automorphism. 

Now we introduce an important notion of the outer rank of a polynomial. 

Definition. Let p E P,, be an arbitrary polynomial. The outer rank of p (orank p) is 

the minimal number of generators x, on which the image of p under an automorphism 

of P, can depend. 
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Polynomials of maximal outer rank (i.e., of the outer rank n) appear to be of rele- 

vance to recognizing automorphisms: 

Proposition 3.2. If p is u test polynomial, then orank p = n. 

Proof. Suppose orank p = m < n. Then there is an automorphism R of the algebra 

P,, such that c(p) = q = q(x1 , . . . ,x,). Define now an endomorphism $ as follows: 

$(Xi) = Xi, 1 5 i 5 rn; $(x,) = 1, m < i 5 n. Then the endomorphism cp = K’I//X 

fixes p, but cp is clearly not an automorphism of P,,. 0 

On the other hand, we have: 

Example 3.3. The polynomial p = x1 + ~1x2 has outer rank 2, but it is not a test 

polynomial of P2. 

Indeed, p is fixed by a non-automorphism cp which takes xi to xi + ~1x2, and x2 

to 0. If the outer rank of p were equal to 1, then for some q E Aut(Pz), we would 

have p(p) = C&XI )(&x2) + 1) E K[xi]. This means that both cp(xi) and (p(x2) de- 

pend on xi only. A mapping like that cannot be an automorphism, hence a contra- 

diction. 

It seems plausible however that polynomials of maximal outer rank can be used as 

test polynomials for distinguishing automorphisms among arbitrary monomorphisms, 

i.e., injective homomorphisms. 

We are now going to prove Proposition 1.3 from the Introduction. The proof is 

based on the following lemma. 

Lemma 3.4. Let K be a reul or algebraically closed field, and let ~1,. . . , pn- 1 belong 

to P,. Then the mupping p : K” --f K”-’ deJned by p(a) = (PI(Q), . . . , P,-I(~)) for 

ull a E K”, is not injective. 

Proof. Let i : K”-’ + K” be the natural inclusion mapping. If p is injective, then the 

mapping i o p : K” + K” is injective, too. Hence it is surjective by [2]. This means i 

is surjective, a contradiction. 0 

Proof of Proposition 1.3. Let p = (PI,. . . , pn_l ) as in Lemma 3.4. Then there exist 

i in K” and ‘;[, fl in K” with CI # fl such that p(u) = 1, = p(p). Then q defined by 

cp(xl) = cl; and $ defined by $(xi) = pi for all i, are as desired. 0 

In case when cp and $ are automorphisms, not just arbitrary endomorphisms, poly- 

nomials with the required property do exist ~ a proof of this fact has been submitted 

to us by D. Markushevich. However, this proof appeals to several facts from alge- 

braic geometry, and cannot be reproduced here without large amount of background 

material. 
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